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ABSTRACT
Let X 1 ,...,X~ be l i d  F an d let  

~l ’••~ ’~n be independent (and

i ndepen dent also of ~~~~~~~~ random variables. For i = l ,...,n , set

1 if  X 1 < V 1 and = 0 if > and Z1 
= m i n~X1,Y1

}. Then

assum ing that F is distributed according to a Dirichlet process (Ferguson ,

(1973) Ann. Stat. 2, 209—230) with parameter a, the authors (1976), J. Amer.

Stat. Assoc. , 61 , December) obtained the Bayes estimator Fa of F un der

the loss function L(F,F) = f(F(u)-F(u))2dw(u) using 
~~~~~~~~~~~~~~~~

Now let X l~~~*~
Xn be ild F0 and 

~
‘l ’”’~n be i id G whe re both F0

and G are unknown continuous distributions. In this paper , i t i s shown

that Fa is mean square consistent with rate 0(n 1 ) and almost sure

consistent with rate 0(log n/!~). Also , i t is established that

{F (uflo < u < T}, T < ~~ , converges weakly to a Gaussian process whose co-

variance structure coincides wi th the limiting covariance structure obtained

from Kaplan—Meier ’s ((1958), J.Ame r. Stat. Assoc. , 53, 457—481 ) product

lim it estimator by Breslow and Crowley ((1974), Ann. Stat. 2, 437-453).

AMS (MOS) Subject Classification : Primary 62E20, Secondary 62G05
Key words and phrases : Survival curve estimator , Dirichlet process ,

censored data , weak convergence , consistency .

Work Unit No. 4 (Probabili ty,  Statistics and Combinatorics)
Sponsored by: 1) The United States ?\rmy under Contract No. DAAG Z9-.75-C-0024:
2) National Science Foundation under Grant No. MSC-76-059~ Z;
3) National Institute of Genera l Medical Sciences, DHE W, under Grant No.

1-RO- 1- GM 23 129 ; and
4) NatIonal Cancer Inst itute , L HEW, under Grant No. 1- RO-l-CA 18332 .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



LAR GE SAMPLE TU EORY ~OR A BAYESIAN NONPARAME TRIC
SURVIVAL CU RVE ESTIMATOR BASED ON CENSOR ED SAMPLES

1 ,2 3 1 2 4V. Su~~ir 1a and J. Van Ryzin

1 . ~NTR0DUCTI0N AND SUMMARY

Recently, a ttention has been drawn to the consideration of obtaining

nonparametric Bayes estimates of a distribution function assuming a manageable

prior (resulting in a manageable posterior distribution ) on the space of dis-

tribution functions F on R (_ ~~,oo) . Towar d s this  goal , Ferguson [4]

introduced a class of priors , known as Dirichiet process priors , on F wh i ch

enjoy the property that the posterior distribution is again a Dirichiet process.

Ferguson used this fact to obtain the Bayes estimator of the right sided

cumulat ive distribution function F (F(x) denotes the probability in (x,~)

and this useful convention is borrowed from Efron [3]) under a weighted

squared error loss function . It can be readily seen that this Bayes estimator

of F will have all the asymptotic properties enjoyed by the maximum likeli-

hood estimator of F if there is no prior on F and the observations are

i.i .d. with an unknown right c.d.f. F0.

An important problem in survival analysis is that of estimating

ei ther parametrically or nonparametrically the survival curve P(X > x) = F(x).

(See , for exam p le , Gross and Clark [6]). While treating this problem of

estima ting surviva l curves based on incomplete data, the authors [11] obtained

the Bayes estimator of F under a weighted squared error loss functi on when

the independent observations from F are randomly censored on the ri ght

under Dirichiet process priors of Ferguson [4]. They demonstrated that this

Bayes estimator is an extension of the above mentioned Bayes estimator of

Ferguson [4] and in a certain sense, also of the well-known Kaplan—Meier

(1(M) estimator [7] which maximizes the likelihood of the observations.

Efron [3] and in a more detailed manner , Breslow and Crowley [13 showed

that the KM estima tor is weakly consistent and asymptotically normal
sponsor~ci ~y: I) Tne United $tatesArmy under Contract No. DAAG29 -75-C-0024;
2) ::a o: a lSc i ~c Fou~~iition under Grant No. MSC-76 - 05952 ;
3) National I~~ tit~ite of C;eneralMedicalSciences , DHEW, under Grant No.
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under the assumption that all the censoring random variables are i.i.d.

con ti nuous ran dom var ia b les.

The object of this paper is to show that our Bayes estimator has good

l imiting properties including mean-square consistency (m.s.c.), almost sure

consistency (a.s.c.) and asymptotic normality assuming that the observations

are i.i .d. with right c.d.f. F0 and that the censoring random variables

are i .i. d. with a continuous distribution function . Efron [3] and Breslow

and Crowl ey [1] have neither rate of convergence results for their weak

consistency nor do they have m.s.c., while we obtain rates for both m.s.c.

and a.s.c. Our methods of proof, in contrast wi th those of Breslow and

Crowley [1], invol ve the analysis of the expectation and the variance of the

logar i thm of Wn(u) involved in the Bayes estimator given in (2.2).

This paper , therefore , generates a new class of estimators of F0,

one for each parameter of the Dirichl et process, when the observations are

censored on the right. Furthe rmore, we have shown that each member of the

class has better asymptotic properties than those established for the KM

estimator by Breslow and Crowl ey [1]. For results of this type in para-

metric cases, see the bibliogra phies of Lindley [8] and Shapiro [9]. A

justification for this paper is given on page 615 of Ferguson [5]. In his

wor ds, “Bayes rules are certainly desirable since general ly they are

admissible and have nice large sample properties. Therefore, it behooves

the statistician to suggest large classes of easily computable Bayes rules

in the hope that users may find some rules to their liking ,” especially if

the Bayes rules have the usual large sample properties enjoyed by the

maximum l ikelihood estimator.

The next section formally descri bes the precise statement of the
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problem and needed assumptions. The rest of the sections deal with various

asymptotic aspects of our Bayes estimator .

2. DESCRIPTION OF THE PROBLEM AND SOME NOTATION

Let X1,...,X,, be a random sample from a right sided c.d.f. F

with F(0) = 1 and ~~~~~~~ be another random sample such that

~~~~~~~~ and ~~~~~~~~ 
are mutually independent of each other. Set

(2.1) = [X~ < Y~3 and = rninfX~3 Y1 }

for I = l ,.,.,n and assume that 1 - F be distributed according to

Dirichlet process with parameter measure a on the Borel c-field B in

(0 ,co). Then the Bayes estimator of F, under the loss function ,

L(F,F) = f (F(u)—F(u))2dw(u), is shown in [11] to be
0

[S.  0, Z. < u]

(2 .2)  F (u) = ~~~~~~~~~ 
N~(u) ~ [a(Z ) + N~ (Z 1) + 

1 1

~(R ) + n i=l L a(Z ) + N (Z~) J
= B~(u) W~(u )

where N+(t) = # of observations > t and X. = # of observations at

i =

The main results of this paper concern the asymptotic behavior of

F under the following assumptions:

(Al) X1,...,X~ are i.i.d. with right sided c.d.f. F0, a fixed

unknown distribution on (O,x~)

(A2) ~~~~~~~ are i.i.d, with right c.d.f. G, a fixed unknown

continuous distribution on (O,=’).

-3— 
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Thu s , wh i le t he rule  un der cons id era ti on i s a Bayes rule , the asymptotic

properties of F are obtained in a non-decision theoretic setup. In other

words , we obtain the asymptotic behavior of F as an estimator of F0.

Throughout we assume that for a fixed (but otherwise arbitrary ) u,

(A 3) cx (u) -~ 0.

Since it is not possible to estimate F0(u) whenever G(u) = 0, we assume

throughout that G(u) > 0 without further reference.

In the hope of reducing repetition , a right sided c.d.f. is referred

to as simply a distribution and the assumptions stated above are assumed

throug hout the paper.

3. MEAN SQUARE CONSISTENCY WITH RATES

This property of F can be studied through the corresponding one

for the logarithm of Wn (U) of (2.2). Under (A3), one obta i ns that

n Ia(Z ) + N~(Z.) + 1
(3.1) in W (u) = ~ [6 .  = 0, Z. < u] in ~ 1 

+n i=l 1 — 

~~~ 
+ N (Z1 ) -

where z(s ) = limit of (
~(t) as t f s. Observe that (3.1) (and hence

(2.2)) is well - defined since a(u ) > 0 by (A3). This property is not enjoyed

by the KM estimate which is not always well-defined in the right tail. It

is precisely this property of convert i ng (2.1) into a sum by use of logarithms

that allows us to obtain stronger convergence results than do Breslow and

Crowley [1] for the KM estimator.

For dealing with the expectation and the variance (and properties

based on these) of in Wn~ 
the following decomposition which fol lows by a

logar i thmic expansion of the summands in (3.1) and the succeeding lemas

will be extremely useful:
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(3.2) iii w
~~

(u) = Rn i (U) + Rn 2 (U) + R~~3
(u )

where

(3.3) nR~~1 (u) ~~~~~~~~ 
0, Z~ <

(3.4) R 2(u)  = 
~ [6 . = 0, 2. < u] ~

j=l~~~ 9~=2

and

(3 .5)  nR~~3(u) O~ Z~ u]{ n[(a (Z )+1+N~(Z~)]~~-W 1(Z~ )}

where

(3 .6) = F0G ,

Lemma 
~~~ 

E [R~~1 (u)I1 = in G(u) and nH2(u) var(Rn 1 (u)) ~ 1.

Proof. Since the suninands of R~~1 (u) are i dentically distributed ,

Li
E[R~~1 (u)] = E[[61 = O~ Z1 < u]H ~~ (Z 1 )] = - f  F0(t)H~~(t)dG (t) 

= -ln G(u)

by the definition of H in (3.6). The variance result follows since each

of the iid summands in R~~1 (u) is bounded by H~~(u ) .

~~ma 3.2. ~t(u )H~ ( u ) (~~
3)E [R~~2(u ) ]  .~ n~(l+a(u ))2.

n
Proof. Since (a 1+ . .. +a )~ < n ~ a~ for any real num bers

i~ 1 1

and since for fixed n , the summa nds of R n 2 (u) are identically distribu ted,

+
n~~E [R 2 

~(u ) ]  E [[ 61 = 0
~
Z1 < u]( ~ L ’(c*(Z )+l+N (Z1)) ) ]

n ,~ — —

(3.7)

2 2 + 4
~ (~ (u )+i) 

— 
} E[(ct(ui+1+N (u)) ]

• 0

~ 

_ _ _ _ _ _ _  -- -



~~~. ~~~~~~~~~~~~~~~ 
•—

~~
-—

~

where the second inequali ty fol l ows by bounding the series by

~ (u(u )+l )2 2 }fa(u )+i+N~(u)Y’
2 and by dropping the indicator function .

The resul t now fol l ows from the fol l ow i n g i nequali ty and (3.7)

E[(a(u )+l+N~(u))
4] = ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

where the i nequality fol l ows since k+i < i(a(u )+k+l ) for i = 1 ,2, 3, and 4.

Lemma 3.3.

a) nH2 (u)IE [R~~3(u)]I .~~.

+ 2a(R~ ) ( 2 +a(R~)){n(n+1)}~

b) (n+2)H 2(u)E[R~~3(u ) ]  .~ 2{l_H (u)+2 (n+2Y~(ct2(R+)+(l_H(u))2)}.

Proof. Since the summands of R~~3(u) are identically distributed ,

E [R n 3 (u ) ]  = E[[61 =O ,Z1<u]{nb~~ )+1+N~(z1)) — H~~(z 1)}]

(3.8 )
= - fF 0(t)E[n(a(t )+l+I( )~~—H~~(t)]dG(t)0 t

where Kt is a binomial random variable wi th parameters n-l and H(t).

Now observe that after some sim plification ,

n-i
H(t)E[n(ct(t )+l+Kt)~~

_W 1 (t)] = ~ ( 1)(k+l )~~~nH(t) —cL (t )— k — i }

(3.9) x

x Hk (t )( 1~H(t ))  .4 {(k+1)(k+ 1+ct(t ) )}~ = I + II.

By a rearrangement ,
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-nH (t)I

while

II ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

since k+2 < 2(ct (t )+k+ l) .  By a change of variable (k-f 2 = 9.) and by using

the binomial moments , we can show from the above inequal ity that

< 
2a(t) [{H(t)(i~H(t)}

h/2 
+

— H Ct) [ ~‘~(n+l) 
n(n +l)

Th i s boun d on II  together w i th that on 1, (3.8) and (3.9) give the first

result since t < u in all the calculations after (3,8).

n n
Us ing  the inequa l i t y  ( ~ a~

)2 < n ~ a~ and the fact tha t the sumn an ds
i=l — i=l 1

of Rn ,3(u) are i dentically distributed for fixed n , it can be shown that

U 1 1E[R~ .~(u)] < — f F,~(t)E[(n(a(t )+K÷÷i) —H (t))2]dG(t) where K~ i s as
, 0 “

in the proof of a). From here on , the proof runs parallel to that in a).

Two consequences of the decomposition (3.2) and the above three

l ermias are given below , the first of which conserns the mean square consistency

(rn.s.c.) of in as an estimator of in G 1 while the second one concerns

the m.s.c. of Fa of (2.2) as an estimator of F0.

Theorem 3.1. Let F0(u) > 0. nE[lln Wn
(u)_ln G~~(Ufl2] is bounded.

Proof. The proof is a direct consequence of the decomposition (3.2)

and the above three lemmas.

Theorem 3.2 , Let F0 (u )  > 0. Then nE[(Fa(u)_ F 0(u) ) 2 ]  is bounded ,

where the bound is given in the remark below.

.- -- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



— ~~~~~~
— — -—

~~-— — ..-—~--~--- --- - --— —- - - - - - -— ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- 

~~~~—~~z-—- -~

4

Proof. Recalling that B and Wn are defined in (2 .2 ) ,  we obtain by

a C e_ inequality .

(3. 10) 2~ ( F ( ) ~~~( ) ) 2  < G 2 ( u ) ( B  (u)~ H ( u ) ) 2 +B2 ( u ) ( W (u)~ G~~ ( u ) )2

where we used the equal i ty H = F0G. Since nB~ (u) can be approximated by

the binomial random var iable N~ (u) wh ose expectation is nI-i (u)( = nF 0 (u)G(u) ) ,

we obtain that

(3 .11) (~ ( R + )+n) 2 E[ (B n (u)~H ( u ) ) 2 j  = ( L ( u ) ~ H (u)a(R +)) 2 +nH(u)( 1~ H(u) )

in W (u)
After writing e n and e

hl G( u ) for Wn(u) and

respectively, and then usin g the mean value theorem leads to (Wn
(u)_G ~~(u))2

< ln W~(u)~ ln  G~~ ( u ) I 2 ( W ~ (u)+G ~~ ( u ) ) 2  since w~ (u )  an d G~~(u) > 1. Hence ,

(3.12) ~~~~~~~~~~~~~~~~~~~ < (J+G ~~(u))2 E [Jln W (u)-ln G~~(Ufl2]

s i nce B~ and BnWn are < 1. Using the fact that E [IA+B+C 12] < 3(E[A 2]

+ E [B 2] + EEC 2]) and then using Leninas 3.1 , 3.2, and 3.3 give the result

in view of (3.10) — (3.12).

Remar k. The bound in Theorem 3.2 is given by

C (U) = 2f i (R + )+n ) 2 {n 2 H(u)( i~ H(u))+n( a (u)~a(R~ )H(u)) 2 }

+ 6(l+G~ (u))2W
2(u){l+a 2(uiW 2(u)( 3

Y
m n(l~~(ui)2

+ the rhs of b) in Lemma 3.3 + the square of the rhs of

a) in Lemma 3.3}.

4. ALMOST SURE CONSISTENCY

Loo ki ng a t the est i ma tor Fa of (2.2), i t is obvious that F

converges a.s. provided W~(u) doe s likewise. The followi ng l enina concerning

-8-
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~~~~~~~ ;~~~~ —~~~~~~
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~~~~~ u1t ~;os’ ~ ‘ •  ~‘u , i r o t ~ , R , and R involved in in W (u)
ri ,1 n ,2 n ,3 n

~ (3 .2 )  i~ ess~ ri~ ial to t - -~uin result of this section.

~~n a 4 .1. Let F (u) > 0. T hen

~ ~ ,1
(i)  + 1~ G(u) = 0( i . _

~~
9_

~1~) a .s .

~ 
= O( b0

~ 
0

) a.s.r

c) R 3(U)~ 
= 0( i9~ fl) a.s.n ,

Proof, a) folio4s from the fi rst part of Lemma 3.1 and the law of iterated

logarithm foe iid random vari ab les . b) follows from Lemma 3.2 and the

Glivenko—Cante ili theor~ since ~ n~~(1og ~)
2 

< ~~

n 2

To prove c), we observe that 
~
Rn 3 (ufl is exceeded by

{n~~ ~ [~~~
. 0 , 2 . uJI ~~~~~ { I  

n 
+ 

- 
1

j=l ~ 
— 0 < t < u a(t )+l+N (t)

Since the e~:ore~ sio n i n the first curly brackets is bounded by unity , it is

enough to show that

- n 1 log n
(4.1) su p + 

— 
H t ~ = O( ) a .s.

0 t ~
- u ~( t ) ÷ i + N  ( t )

The lhs of (4.1) is bounded by

(4.2) 1 
-- sup - H(t) - 

l+a (t )1}

~ C u ) 0 < t < u n

Now by Lerur a 1 o F ~-i r ~ tzky , V iefer , and Wo lfowitz [2]

P[ ~~~~~~~~~~~ sup [~~~~~~
-
~~~~~~~

- - H(t)I} > c] < c0 e~~~~
09 n)2

~ 0~~~t < u  



________ - -~~~~-—-~~~~~~~~~~~ -- 
~~~

,
~~~~~~~~~~—--- , - --- ----—-.,——

~~----

for some absolute constants c 0 and c. Hence

sup { 1~-~-~-~ 
- H( t ) I }  = O(~~~

_n) a .s.
O < t ~~~u

since c( log n)2 > 2 log n for large n and ~ n 2 
< ~~~. Th is comp letes

n 1
the proof of (4.1) and hence also of c).

Theorem__4,1. Let F0(u) ~ 0. Then

F (u) - F (u) = O( log n/v’~i) a.s.
2 0

Proof. By a triangle inequality ,

(4.3) F (u)-F 3(ufl < G
~~

(UflB n (U)~
H(U))+Bn (Li))W n (Li)~

G 1 (Li )j
~

The first term on the rhs is O(log log n/v’Fi) a.s. since

= 0( log log n/ ,)~) a.s, by the law of iterated l ogarithm .

As in the proof of Theorem 3.2 , we can show tha t

(4,4) B (u)~ W (u) -G~~(ufl < (l+G~~( u ) ) ~ ln  W~ (u)~ 1n G~~(u)t .

Bu t ln  Wn (u)_ln G 1
(ufl = O(log n/v’iT) a.s. due to the decomposition (3.2),

a triangle inequality , and parts a), b), and c) of Lemma 4.1. Thus (4.3)

and (4 .4 )  complete the proof .

5. WEAK CONVERGENCE OF Fa

In this section , we consi der the weak convergence of {Fa(U) 0 < u < T}

where I < ‘ . We assume throughout this section that H(T) = F0(T)G(T) > 0.

It is conven ient sometimes to suppress the dependence of the functions and

to let 
~T 

denote the sup norm over (O,T].

The discussion to fol low reduces the consider ation of

{ F ( u ) } O  < u - U to a much more accessible form . To start wi th, we observe that

-10-
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(5~ 1) /~ (F - F0) = /r~(B -H) G 1 
+

and that
ln W lnG~ -l in W -ln

W n
_ G

~
1 

= e n e = e l n  G (e n -1)

= G~~(ln W~ - ln  G~~) + 
G )2 

ec + ln

where c is between 0 and in W - in G”* Therefore , from (5.1), we

- v~ HG ’
~~(ln Wn~ln  G~

(5.2)

~~ fiB -H 
~T 

fi l n W -ln G~ ~T 
I1G~ i~ 

+ ( Mn W~-1n G~ ~T~~’

The purpose of the following l emma is to show that the rhs of (5.2) -
~ 0

a .s .  by show i ng that n~ f in Wn
_ l fl G~ II I -

~ 0 a.s. for any 25 < 1.

Lemma 5.1. n5 j in Wn 
- in  G” ‘T 

-
~ o a.s. for any 25 < 1.

-. U
Proof. W ith H (u) = f F0(t)d(1—G (t)) = P[61 

= 0, Z1 
< u] and with

— n 
n —

nH n ( u )  = 
~ 

[o~ = 0, Z~ < u], we have
j=1

ji n Wn~
ln  G 1 

~ = I n ln{l- (c~(si+l+H~(s)Y
1 }dH~(s)- fH~~( s) dH ( s )  

~T0 0

(5.3)

f nfa (si+l+nHn(s)Y
1dHn ( s )

~ 
.~ H~~(s)dH(s) ~0 0

— 2
+ 

n (l+a (j ~
)

(~ (T )+1+nH (T))2 (-t(T ))2

where the inequality follows by a logarthmic expansion and an obvious weakening

of the series from the second term onwards. Observe that the second term in

the rhs of (5.3) -~ 0 a.s. at a rate n~~ w i th 25 < 1 .

-11-



For the firs t term on the rhs o f (5.3),

n; ~(s )+1+nH ( s ) } ~~dH ( s )  - I W 1 (s)dH(s)  i— 0 0

(5.4) < f i f~n{ ~(s )+l+nH (s)11-H~~(s) } dH (s ) T + IIH (s )d(H -H ) ( s)  
~T0 0

< J f [ n t ~ (s )+l+nH (s)}*H~~ (s) ]dH (s) T + 2W 1 (T) Hn~
Hn

where the second inequality follows by appl ying integration by parts to

I H~~( s)d (H~— H ) ( s )  and upon observing that the variation of H 1 on (0 ,’]
0
is H~~( .). By the law of iterated logarithm for i i d random var i ab les

~n~~(. )+i+nH (.)}-H~~(.) 
~T 

o a .s .  a t a rate O ( n 5 ) with 25 < 1

and by applying the argument given by Singh [10] to the random variables

[3~ = 0, < u], j = 1 ,...,n , we obtain that I H n
_H I~ 

-* 0 a.s. at a rate

O (n ’5 ) with 25 < 1. Consequently the rhs of (5.4) and hence , the rhs of

( 5 .3) -
~ 0 a.s. at a rate O(n 5) with 25 1.

In view of (5.2), an easy Corollary to the above l emma is

Corollary 5.1. v~(F -F0)-vTG (B~-H)-v~iHG
”1 (ln W~-1n G~~) ‘T 

-
~ 0 a.s.

at a rate O (n ’5) for any 25 < 1.

By following the method of proof of Lemma 5.1 , we can also show that

j Lemma 5.2. j/~( l n  W~~ln G’~ )-v~(f H~~dH n 
- H’~ dH) T 

-
~ 0 a.s. at a rate

0 0
O(n 5) wi th 2~ < 1.



—.- 
~~~~~

—- ~~~~~~1

‘
~~te. ~o- r e  in~~- jroi 1 ; H~~dH could be infinity, but finite a.s.n

si nce PH (s) Pfl. = 0, Z. s for j = 1 ,...,n] ‘ P[ Z.  < I for

j = l,...,n] ( l - H ( T ) ) ° for all s T .

~ero e, ~ j  i~ r-u l l r i  5.1 and Lemma 5.2, we can study the weak conver—

gence of ~F (ufl 0 ~
- I through the corresponding one for

(5 .5) .~~G~~(B -H) + /~HG~~( JW
1 dH - fH~~dH)n 0 n n

The fo l lowing thcore m, which is parallel to Theorem 3 of Bres low and

Crow ley [1], is needed i n  the stud y of the weak convergence of (5.5) or

equivalentl y that of ~F (ufl0 < u < T}.

Theorem 5.1. Define (P~~Q~ ) c D ( O ,T) x D(0,T] ( D ( O ,T] is the space of

functions on (0,TJ with jump discontinuiti es )by P~ = v4T(H—H~) and

Q = ~( H — H) .  Ther 
~~~~~~ 

con verges weakl y to a bi var i ate Gauss i an

process (P , )  .ihich ha -. mean 0 and a covariance structure given for

s < t  by

( Cov (P(s),P(t)) = H(t)(1-H(s))

Cov(Q(s),Q(t)) = H(s)(l-H(t))
(5 .6) .

~ 
—

r- o v ( P (s ) ,Q( t ) )  H ( s ) — H ( t ) ( l — H ( s ) ) ,

and Cov (Q(s),P(t)) = H(s)H(t)

where H = F~~ and H - 1 F0d ( l — G ) .
0

As j n  (7.~ ) of h~~~ low and Crowley [1], we can represent (5 .5 ) as

(5.7) H.5) = r 1Ii ( B
~1~

H) + A0 + Bn + R l n  +

—1 3— 

—--- - - -
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A = J P H 2dH ,n

B = Q~~~W
’ - I Q W 2d( l-H)

(5.8) 
n 0

1 R = n~~~
2 I p2H~

2H~
ld~l ,n n n n

and R2 n  
= I PnH

~
1H

~~
d(H n_ H)(u)

By the above representation for (5.5) and steps similar to Theorem 4 of

Bresiow and Crowl ey [1] , we obtain the following theorem which is similar to

Theorem 5 of Breslow and Crowley [1].

Theorem 5.2. Let I < and H(T) > 0. Let F0 and G be continuous.

Then the random function 
~
/
~
T(Fa

_F
0) on (0,1] converges weakly to a mean

O Gauss i an process R* = -GA P + I W 2PdH + W1Q + I W 2QdH with covariance
O 0

structure given for s < t by

1 S
COv(R * (s ), R*(t)) = F0 ( s ) F 0(t)(H (s ) ( l— H (s) )+ I H G dG)

(5.9) 0
= F0( s )F

0
( t) ( f H 1F~~d( 1—F 0)}

Remark 5.1 
. 

The covariance calculations involved in (5.9) are given in

the Appendix. We notice here that the rhs of (5.9) coincides with (7.13)

of Breslow and Crowley [1].

CONCLUDING REMARKS

There are three small sample advantages for the Bayes estimator (2.2)

over the KM estimator. The first is that it is defined everywhere on the

real l ine for any n while KM estimator is not. Secondly, as illustrated

in our paper [11], the Bayes estimator is smoother than the KM estimator.

-14-
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The final important advantage is that the Bayes estimator is an admiss ible

estimator of F provided that the support of it = support of w = (O ,°~)

un der the loss function L(F,F) = I (F(u)—F(u))2dw(u) and under the weak
0

convergence topology .

The results of this paper can be extended to the case in which

are independent , but not identically distri buted. The technique

used to obtain this extension is different from the ones proposed here and

will appear el sewhere.
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*
AP P~N~) IX :  LhVA ~ 1ANC[ STRUCTURE OF R OF THEOREM 5 .2

*
To ~~ the covuri ance structure of R , it i s conven i ent to stu dy

the covar-iance structure of

-l — 2 — lR = F 0 R H P +  !H Pd H ÷ H  Q +  fl-I QdH.
0 0

We use r e u r i t e d l y ( 5.~ ), integration by parts and the equalities H F0G

and dH = d( :F0d(l—G) ) 
= — F 0dG. We write Cov(R(s),R(t) = Var(R(s))

0
+ Cov(R(s),R(t)-R(s)) for 0 s < t < T, show that Var(R(s)) = the

expression in the curly brackets of (5.9), and that Cov(R(s),R(t)—R(s)) = 0.

VARIANCE OF R ( s )

(1) Var(H~~(s)P(s)) = H~~(s)(l-H(s))

(2) 2Cov( H~~( s ) P ( s ) , W 1 ( s ) Q ( s ) )  = -2H~~(s)H(s)

(3) 2Cov (W 1 (s )P (s ) , fW 2PdH) = 2H~~(s) ~ C o v(P ( u ) ,P(s ) )  dH
O 0 H2 (u )

L 
5 dH

= —2 f — j -_ 2 l n G(s) ,

O H

(4) 2Cov(H~~(s)P(s), JQH
2dH) = 

Cov(P(s),Q(u)) dH
0 0 H2(u)

= + 2 ~~-~ - f + 2 l n G(s) ,

(5) Var(IW
2PdH) = 2 ~ Cov(Ptuj,P ( r ) )  dH(r)dH(u)

0 0 0 H7(u)H2 (r)

2 !  ~~~
) }O H ( r)  = 2 1  (in G(s) -l n G(rfldG )n 2 G (s) ,

- 17- 
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(6) Var (H~~( s ) Q (s) )  ~~ )(l-H(s))

H2(s)

(7) Var(JW 2QdH) = 2 ~ Cov(Qtu )~Q(r)) dH(u)dH(r)
0 0 0 H2(u)H2(r)

= 2 1 1 dH(r)dH(u) = 2 1 1~~ - ~ -in G}dH
O 0 H2(u) 112(r) 0 H2

= 
(1-H(s))H(s) 

- ~ dH-2HdH + 2j~1_H(s)) in G(s)
H2(s) 0 H2 ~~H(s)

:i
- I dG + f L!~_~2. dH>
o u 0 H j

(8) 2Cov(fW 2PdH ,H~~(s)Q(s)) 
= ~~~~~~~~~~~~~~ ~ov(Q(shP(u)) dH(u)

0 0 H2(u)

=~~~~~~~~~~ dH - H(s) f~~~~dH + H(s) f~~~d~~

(9) 2Cov(H’~ (s)Q(s), I W
2QdH) = 

~~~~~ 
Co dH(u)

0 ~~O H (u)

= - 
2(l—H(s))H(s) 

— 
2(1—H(s))  in G(s)

112(S) H(s)

S — S

(10) 2Cov (JH 2PdH, JFI2QdH)
O 0

= 2 ~ ç~~~p(u),Q(r)) dH(r)dH(u) + 2 ~ Cov(P(rhQLufl dH(r)dH(u)
0 0 H 2 (u)H 2(r)  0 0 H2(u)H2(r)

~~~~~~~~~~ — ~~~~~~~~~~~~ ~~~~~
= 2 f  j  H~r1H~,uj dH(u)dH(r) + 2 ~ ~~~~~~~~~~~~~ dH(r)dH(u)

0 0 H 2 (u)H 2 (r) 0 0 H2(u)H2(r)

-18-
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n G(s) - 2 1 —
~~

-- dH= _
)
! 

~fr 
dG + 21 H d H  

- 
211(s) S dG 2H(s) i 

—

0 H 3 
_
~~ _)~~ r~~~ + 

H[sJ O H 3

S 
-. -. S S

+2j Ji dH — 2 I 
(ln G(s)-ln G(r)) dli + 2 f in G(s )- ln GLri dG00 112 0 0

5
..

—

-2j -
~~~ dH + ln2G(s).

O H2

Add ing (1) through (10) and using the facts that H = F0G and

dH = -F0dG wherever necessary, we ob ta i n the expression i n the cur ly

brackets of (5.9).

COVARIANCE OF R(s) AND R(t)—R(s)

There are 16 terms in th is cova riance calcula ti on wh i ch are g rouped

below into S se ts of ex press ions. The sum of all the ex p ress ions in eac h

group will be equal to zero, thus showing that Cov(R(s),R(t)-R(s)) = 0

for 0 <  s < t  <1.

Cov (P(t )  P(s))  
— 
VariP (s)) 

= o(Al ) Cov (~f~.3-~ 
-
~~
-
~- — 

~~~~~~~~~~~ 
= H(t)H~s) 112(s)

(A2) Cov(~-~~f 
,JW2PdH) = H~~(s)f Cov(P(u),P(s)) dH = l

~
H(S)(ln G(s)-ln 0(t))

(A4 ) covc~~~~,~ H~
2QdH) = 

ç9v(P(s),P(u)) dH = ~~l (5)~ ~LS)-H(u)(l-H(5)) dH

S H2 (u)

(A3) Cov(~
. .3-1~-~-~-3- — ~if~.f) = !if~ ~~

l 
- l} H(t)(l-H(si)

— H(s )H~t)

s H2 (u)  5 H2 (u)
1

= ( s )  - - 

H(s) 
- + in G(s) - l n G(t~

~
f
~~

1 1 ~ (1—H(s) )

_ j q _

I
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P ( s )5 9
(8 1) Cov (f H~~PdH , 

~-~+f -

0
1 ~ cg!~!(~LL!(_~n dH(u) Cov (P(u),P(~fl dl-l (u)

= 

~~~~ 112 (u) 
- 

~~~~~ 112 (u)

dH( u) - ; ~ - - ~~-~ -~~~~ dH(u) = 0
0 H2 (u) 0 H2 (u)

(B2) Coy (q4~4 ?4~ - ~~~
) = - 

ç jQ(~j1P~~JJ = o.

112 (s)

~ Cov(P(u),Q(tfl dll (u)(83) Cov(fH~~Qd
0 

H , 

~-~-~-f 
- 

~~~~~~~~~~~ 
= 

H2 (u)

1 ~ Cov(Q(u),P(S)) dH (u) 0.- 

W (u )

(Cl ) Cov (IH 2PdH ,JW 2PdH) = ~ ~

O s 0 0 H 2 (u)112(r)

= ~(l-H(r)) dH(r) f 
- 

= I ~~~~~~~~~~~~~ (in 0(s)-in G(t))dH(r)

O 112 (r) ~~~~ dH(u) 
~ 112 ( r )

= (in G(s)-ln G(t)) 1 
1-11(r) dH(r)

0 H2 (r )

S _______________________
______________ - dH(u )

dH, 

~f~- — 
~~~~~~~~~~~ 

= 
1~~~ Cov( Q ( t ) , P(u)) 1 ~ Cov (Q (s) , P(U)) —

(C2 ) Cov ( IW 2P
112( U)  1T(iT

0 112 ( U )

= 
1 ~ . j~~)- H(t)( 1-HC~)I d H ( u ) - ~ H(u)- H(s)( l-H~~fl dH(u)

H2 (u) H2 (u)

1 I H dH !ic~.t~I f
i

~~~~~~~ dH ~ 
S 

- 
— H f

1
~
H dH- 

~~~~~~~~~~ 

i —h- dH +
112 H(t ) 0 112 0 H2 H o 112

-20 -
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(C3) cov(:~~
2PdH , FI2QdH) = ~ ~~~~~~ dH(r)d H(u)

0 s 0 s H2 ( r ) H 2 (U )

= ~ 
t H~~~~~~~~E11~~~I~~H(r)d u)

O s 112(u)H2(r)

- + - + in 0(t)- in G (s) }f 
112 

dH

(Dl ) Cov (H~~(S) Q( S ) ,  JH 2PdH) = H~~(s)  f ~~~~~~~~P u  dH (u)

s s H2 (u )

= ~~~~~~~
-

~
- (in 0(s) - in 0(t ) )

(02) Cov (H~~(s )Q(s ) ,~~~~ 
- = 

-

= 4THH t 112( ;)

(03) Cov (~~~~
- , H 2 QdH) = I ~~~~~~~~~~ dH (u) = dH

H (s ) 1 1 H t )  H s
= H(s) ~~~~ 

- 

11(t) 
+ H t H s 

+ln 0(t)-in G~s )} .

(El) cov(IW
2QdH ,IW2PdH) = I I c2~~&~~~~~~ dH(r)dH(u)

0 s 0 S 112 (r)H 2 (u)

= ~ ~~~~~~~QL~~~(r)dH (u)
0 S 112(r)HZ(U)

= -~-ln G(t)+ ln G(s) } ( ~~~~ 
+ in G(s ) } .

-21-
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1
1

(E 2) Cov(f H 2QdH , 
~f~

-

~

- -

= 
1 ~ Cov~~(t)~Q(~&)) dH (u)  - 

~ ~ • ç~y~Q(s),Q(ui) dH (u)
112(u) 

H S H2(u)

- 
l-H(t) ~ - 

1-H(s) ~ dH- H(t) 6 112 H 0 1 12

(E3) Cov(IFI2QdHJW
2QdH) = ~ ç2y~Q(r),Q(u)1 dH(u)dH(r)

0 0 s H2(u)H2(r)

= ~~ 
i~~~

u) dH(u)) ~4i~ dli(r)O s  H2(u) H r

= - f dH + (f ~J:!. dH){~f~.f 
- 

~~~~~~~~~~ 

+ in 0(t)-in 6(s)) .
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